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Appendix I – Generalized Linear Model 

The Poisson Regression Model 

The Poisson regression model is a specific type of generalized linear model (GLM).  A 
comprehensive reference for GLMs is McCullagh, P. and Nelder, J.A. (1989) Generalized 
Linear Models. Second Edition. London: Chapman and Hall1. 

A GLM is described by the following assumptions: 

1. There is a response variable, y, observed independently for specific values of the predictor 
variables, x1, x2,, …,xp. 

2. The predictor variables influence the distribut ion of y through a single linear function called 
the linear predictor 1 1 2 2 p px x xη β β β= + + +K . 

3. The distribution of y has a density function of the 
form ( ) ( ){ } ( ); , exp / , /i i i i i i i if y A y y Aθ ϕ θ γ θ ϕ τ ϕ = − +  , where ϕ  is a scale parameter, Ai 

is a known prior weight, and parameter iθ  depends upon the linear predictor. 

4. The mean, λ , is a smooth invertible function of the linear predictor: ( ),mλ η=  

( ) ( )1m lη λ λ−= = .  The inverse function, ( )l • , is called the link function. 
 
For a Poisson distribution with mean λ , we have ( ) ( ) ( )ln ln ln !f y y yλ λ= − −  so ( )ln ,θ λ=  

1ϕ =  and ( ) eθγ θ λ= = .2 

Given n observations from a GLM, the log- likelihood function is  

( ) ( ){ } ( )
1

, ; / , /
n

i i i i i i
i

l Y A y y Aθ ϕ θ γ θ ϕ τ ϕ
=

 = − + ∑ , 

which has a score function for θ  of  
( ) ( ){ } / .i i iU A yθ γ θ ϕ′= −  

From this it can be shown that 

( ) ( )i i iE y λ γ θ′= =  and ( ) ( )i i
i

VAR y
A
ϕ γ θ′′= . 

 
The score function is only provided here for reference purposes; we do not make use of it in 
subsequent sections of this report.  For a derivation of this, including use of the score function, 
see McCullagh and Nelder, 1989, section 2.2. 

                                                 
1 Another source for a quick review of generalized linear models is Christensen, R. 1997 . Log-Linear Models and 
Logistic Regression, 2nd Edition. Springer-Verlag. Chapter 9, Generalized Linear Models. 
2 For a review of homogeneous and non-homogeneous Poisson processes see: Ross, S. 1997. Introduction to  
Probability Models, 6th Edition, Academic Press. Section 5.3 and 5.4.  Also see Kao, E. 1997. An Introduction to 
Stochastic Processes, Duxbury Press. Chapter 2. 
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We assume that the number of loans that will “claim” during a given year, out of the loans that 
are active 3 at the beginning year, is a function of a number of predictor variables.  We further 
assume that the mean or expected number of claims during a given year is the parameter of a 
Poisson distribution.  The Poisson distribution models the probability of y events, or claims, 
according to a Poisson process with the probability distribution function given by: 

 ( );
!

ye
p y

y

λλλ
−

= , for y = 0,1,2,… (I.1). 

The mean or expected value of the Poisson distribution is λ ; this is known as the Poisson 
parameter. 

The Poisson parameter is dependent on a specified unit or period of time.  For our model we 
assume that the basic unit of time is one year and that a given Poisson distribution only applies to 
this period.  For example, it would be incorrect to assume that a specific Poisson parameter 
applies for a period of two or more years since each year will have its own “unique” Poisson 
distribution. 

The mean number of claims, or the Poisson parameter, is a function of the predictor variables.  
Suppose the data takes the form: 
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where the yi represent n observations of the response variable and the xij are the corresponding 
observed values of k predictor variables. 

The model is then written i i iy λ ε= +  for i = 1, 2, . . ., n.  The probability as a function of the 
predictor variables is: 

 ( )
( ) ( ),

,
; ,

!

ii yx

i
i i

i

e x
p y x

y

λ β λ β
β

−   = , for yi = 0, 1, 2, . . . (I.2). 

(In this notation β  and ix  are vectors.)  Here ( ),ixλ β  replaces our earlier λ .  The function 

( ),ixλ β  must always be non-negative.  A candidate for this function is 
'
ixe β , where '

ix β  is a 

linear function.  ),( βλ ix  relates the predictor variables to the mean.  Then equation (A.1) is of 

the form βλ ⋅′= ix)ln( .  Transforming the log link function we get the following expression for 
our response variable: 

 ttttttt HPAHPAANNAGELTVLTVCUMDIFFLTRGTRRTINTtt
t e ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+= 1098076543

2
21 .3.1.1..( ββββββββββαλ  (I.3). 

 )4..0.1.1. 161514131211 SRAGEINCPAYLUNEMPRHPRLTNEGEQRGTNEGEQ tttt ⋅+⋅+⋅+⋅+⋅+⋅+ ββββββ  
 

                                                 
3 By “active” we mean loans that enter a given year and have not claimed, prepaid or have been otherwise 
terminated. 
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Since ( ) '

var ix
iy e β=  is not homogeneous from observation to observation, standard least squares 

does not apply.  We use maximum likelihood methods.  For the Poisson model the log- likelihood 
function is given by: 
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We employ a generalized linear model (GLM) because our link function is non- linear and the 
error variance is not homogeneous.  Since explicit expressions for the maximum likelihood 
estimators are not generally available, estimates are calculated using an iterative approach.  As 
mentioned in Appendix A, a commonly used approach is iteratively re-weighted least squares 
(IRWLS).4 

An outline of the IRWLS procedure is given below. 5 

1. Obtain an initial estimate of the coefficients and from this result obtain an initial estimate 
of the residuals.  The initial estimate of the linear predictor is obtained using a standard 
linear model that checks for problems such as negative logarithms. 

2. From the initial residuals, compute a variance estimate, 0σ̂ 2 (equal to the squared 

residual), and the initial weights, ( ) ( )* *
,0 ,0 ,0/i i iw e eψ= .  Here ( )ψ •  is the influence 

function. 6 
3. Use weighted least squares to obtain new robust parameter estimates. 
4. Let the parameter estimates from step (3) take the role of the initial weights in step (1) 

and obtain new residuals, a new variance estimate, and new weights. 
5. Return to and repeat step (3). 
6. Repeat until the estimates converge.  The convergence criterion is to stop if 

1i ideviance deviance ε−− < .  In our model we set ε  equal to 10-4.  The deviance for 

iteration i is defined as twice the log- likelihood ratio statistic; this is given by 

( ) ( )( ){ } ( ){ }
1

ˆ ˆ2
n

i i i i i i i
i

A y y y yθ γ θ θ γ θ
=

 − − −  ∑ . 

                                                 
4 For a complete description of the IRWLS procedure please see McCullagh and Nelder, 1989, section 2.5.   Another 
source is Stokes and Koch, 1983; A Macro for Maximum Likelihood Fitting of Log-Linear Models to Poisson and 
Multinomial Counts; Proceedings of the Eighth Annual SAS Users Group International; Cary, North Carolina: SAS 
Institute, pp. 795-800. 
5 Note that, although the procedure is conventionally known as iteratively re-weighted least squares, it is a maximum 
likelihood technique. 
6 An influence function estimates how individual data points affect regression results.  We use a Huber influence 

function which is bounded: ( )* *
i ie eψ =  if *

ie r≤  and r if *
ie r>  and –r if *

ie r< − .  We set r =1 and 

* i
i

i

ee σ= .  In OLS the influence function is the identity function.  See Huber, P.J. 1973. Robust Regression: 

Asymptotics, Conjectures, and Monte Carlo. Annals of Statistics 1: 799-821. 
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Supposed Bias in GLM 

It has been argued that log- linear models (like the Poisson model used in our analysis of 
conditional claim and prepayment rates) are biased, and therefore the results of such a model 
would need to be adjusted by some factor to correct for that bias.  In the following text, we 
explain why this is not the case and that no adjustment is needed.7 

The argument for log- linear bias begins with the statement that the log- linear model is specified 
as: 

εβλ +⋅= x)ln(  

where epsilon represents the error term.  However, the correct specification of a log- linear model 
is: 

xe ⋅= βλ )ln(  

The differences between the two specifications are: 

1. The intention is to model the expected value of the response, in this case, the Poisson 
parameter, and 

2. There is no error term because we are modeling the expected value. 

In the Poisson regression model,  the only variability is around the Poisson counts.  There is no 
automatic bias in this estimate because of the “errors” in the linear model; no such errors are 
assumed to be present. 

The suggestion of bias in the argument flows from the idea that )ln( λ  is determined via a linear 
model with errors and that the observation is taken from a Poisson model with a λ  so 
determined.  While this “linear-model-with-errors-for- )ln( λ ” view could be appropriate, it does 
not correspond to the usual GLM.  With the latter, observations are taken from a Poisson model 
where the log of the mean is exactly linear in the explanatory variables.  No errors enter into the 
population values of )ln( λ .  The key modeling assumption under the usual GLM view of things 
is that )ln( λ  corresponding to different values of x lie exactly on a straight line.  Departures from 
straight line behavior in actual counts arise solely out of the Poisson variability at each λ . 

If it is believed that the populations, cells in this case, being modeled are comprised of groups 
with varying Poisson parameters, then one would build a Mixed Effects model.  In this type of 
model, we would introduce additional variability around the Poisson parameter - the most 
popular approach to doing this is to assume that the Poisson parameters are Gamma distributed 
in which case the model turns out to be a Negative Binomial. 

                                                 
7 The explanation that follows was enhanced by discussions with several statisticians and econometricians from 
various academic institutions and professional service firms, including the Wharton School of the University of 
Pennsylvania, Oxford University, Virginia Tech, and Deloitte & Touche.  In addition, a more introductory text is 
Dobson, Annette J. 1990. An Introduction to Generalized Linear Models, CRC Press. 
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With respect to the interpretation of xe ⋅β  at a given value of x, and where β  is estimated, this is 
both the estimated mean at the given x and a prediction of a given count at that x.  The latter is of 
course “predicted” with much less certainty since actual counts deviate from the mean according 
to Poisson variability (which is equal to the mean).  Another sometimes important issue is that 
β , and possibly x, are estimated, and hence subject to error.  This implies the estimate of the 
mean is subject to estimation error which could be taken into account when making inferences.  
However, there is no consensus on how this should be accomplished - some suggest that the 
confidence interval around the mean should be increased.  As a practical matter, the estimation 
error associated with β  and x is often small in relation to the Poisson variability of the counts 
given λ  (that is, assuming β  and x are known exactly). 
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